Page 1



joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5)
N5-021143

Meeting #21, Dublin, IRELAND, 28 – 31 October 2002

	CR-Form-v7

	CHANGE REQUEST

	

	(

	29.198-03
	CR
	CRNum
	(

rev
	-
	(

Current version:
	5.1.0
	(


	

	For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

	


	Proposed change affects:
(

	UICC apps(

	
	ME
	
	Radio Access Network
	
	Core Network
	X


	

	Title:
(

	Correction of status of methods to interfaces in clause 6.3

	
	

	Source:
(

	ETSI STF211 

	
	

	Work item code:
(

	OSA2
	
	Date: (

	31/10/2002

	
	
	
	
	

	Category:
(

	F
	
	Release: (

	REL-5

	
	Use one of the following categories:
F  (correction)
A  (corresponds to a correction in an earlier release)
B  (addition of feature), 
C  (functional modification of feature)
D  (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
Rel-4
(Release 4)
Rel-5
(Release 5)
Rel-6
(Release 6)

	
	

	Reason for change:
(

	There is no requirement in the standard about the necessity to implement all or only some of the methods defined for an interface.

	
	

	Summary of change:
(

	Clarify which methods are mandatory and which are optional.

	
	

	Consequences if 
(

not approved:
	Application developers will not know which methods will actually be available.

	
	

	Clauses affected:
(

	6.3.1 Trust and Security Management Interface Classes

	
	

	
	Y
	N
	
	

	Other specs
(

	
	X
	 Other core specifications
(

	

	affected:
	
	X
	 Test specifications
	

	
	
	X
	 O&M Specifications
	

	
	

	Other comments:
(

	


How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at http://www.3gpp.org/specs/CR.htm.  Below is a brief summary:

1)
Fill out the above form. The symbols above marked (
 contain pop-up help information about the field that they are closest to.

2)
Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks"  feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3)
With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text.  Delete those parts of the specification which are not relevant to the change request.

6.3 Interface Classes

6.3.1 Trust and Security Management Interface Classes
The Trust and Security Management Interfaces provide:

-
the first point of contact for a client to access a Framework provider;

-
the authentication methods for the client and Framework provider to perform an authentication protocol;

-
the client with the ability to select a service capability feature to make use of;

-
the client with a portal to access other Framework interfaces.

The process by which the client accesses the Framework provider has been separated into 3 stages, each supported by a different Framework interface:

1)
Initial Contact with the Framework;

2)
Authentication;

3)
Access to Framework and Service Capability Features.

6.3.1.1 Interface Class IpClientAPILevelAuthentication 

Inherits from: IpInterface.
If the IpClientAPILevelAuthentication interface is implemented by a client, authenticate(), challenge(), abortAuthentication() and authenticationSucceeded() methods shall be implemented.  
	<<Interface>>

IpClientAPILevelAuthentication

	

	<<deprecated>> authenticate (challenge : in TpOctetSet) : TpOctetSet

abortAuthentication () : void

authenticationSucceeded () : void

<<new>> challenge (challenge : in TpOctetSet) : TpOctetSet




6.3.1.1.1 Method <<deprecated>> authenticate()

This method is deprecated and replaced by challenge(). It shall only be used when the deprecated method initiateAuthentication() is used on the IpInitial interface instead of initiateAuthenticationWithVersion().  This method will be removed in a later release of the specification.

This method is used by the framework to authenticate the client.  The challenge will be encrypted using the mechanism prescribed by selectEncryptionMethod.  The client must respond with the correct responses to the challenges presented by the framework. The number of exchanges is dependent on the policies of each side.  The authentication of the client is deemed successful when the authenticationSucceeded method is invoked by the Framework.  

The invocation of this method may be interleaved with authenticate() calls by the client on the IpAPILevelAuthentication interface.  The client shall respond immediately to authentication challenges from the Framework, and not wait until the Framework has responded to any challenge the client may issue.

Returns <response> : This is the response of the client application to the challenge of the framework in the current sequence. The response will be based on the challenge data, decrypted with the mechanism prescribed by selectEncryptionMethod().  

Parameters

challenge : in TpOctetSet

The challenge presented by the framework to be responded to by the client.  The challenge mechanism used will be in accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol [RFC 1994, August1996]. The challenge will be encrypted with the mechanism prescribed by selectEncryptionMethod().
Returns

TpOctetSet

6.3.1.1.2 Method abortAuthentication()

The framework uses this method to abort the authentication process where the client is authenticating the Framework. This method is invoked if the framework wishes to abort the authentication process before it has been authenticated by the client, (unless the client responded incorrectly to a challenge in which case no further communication with the client should occur.)  Calls to this method after the Framework has been authenticated by the client shall not result in an immediate removal of the Framework's authentication (the client may wish to authenticate the Framework again, however). 

Parameters

No Parameters were identified for this method

6.3.1.1.3 Method authenticationSucceeded()

The Framework uses this method to inform the client of the success of the authentication attempt. The client may invoke requestAccess on the Framework's APILevelAuthentication interface following invocation of this method. 

Parameters

No Parameters were identified for this method

6.3.1.1.4 Method <<new>> challenge()

This method is used by the framework to authenticate the client. The client must respond with the correct responses to the challenges presented by the framework. The number of exchanges is dependent on the policies of each side.  The authentication of the client is deemed successful when the authenticationSucceeded method is invoked by the Framework.  

The invocation of this method may be interleaved with challenge() calls by the client on the IpAPILevelAuthentication interface.  The client shall respond immediately to authentication challenges from the Framework, and not wait until the Framework has responded to any challenge the client may issue.

This method shall only be used when the method initiateAuthenticationWithVersion() is used on the IpInitial interface.

Returns <response> : This is the response of the client application to the challenge of the framework in the current sequence. The formatting of this parameter shall be according to section 4.1 of RFC 1994. A complete CHAP Response packet shall be used to carry the response string. The Response packet shall make the contents of this returned parameter. The Name field of the CHAP Response packet shall be present but not contain any useful value. 

Parameters

challenge : in TpOctetSet

The challenge presented by the framework to be responded to by the client.  The challenge format used will be in accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol [RFC 1994, August1996].
The formatting of the challenge value shall be according to section 4.1 of RFC 1994. A complete CHAP Request packet shall be used to carry the challenge value. The Name field of the CHAP Request packet shall be present but not contain any useful value.
Returns

TpOctetSet

6.3.1.2 Interface Class IpClientAccess 

Inherits from: IpInterface.
IpClientAccess interface is offered by the client to the framework to allow it to initiate interactions during the access session.  
This interface and the terminateAccess() method shall be implemented by a client.
	<<Interface>>

IpClientAccess

	

	terminateAccess (terminationText : in TpString, signingAlgorithm : in TpSigningAlgorithm, digitalSignature : in TpOctetSet) : void




6.3.1.2.1 Method terminateAccess()

The terminateAccess operation is used by the framework to end the client's access session.

After terminateAccess() is invoked, the client will no longer be authenticated with the framework. The client will not be able to use the references to any of the framework interfaces gained during the access session. Any calls to these interfaces will fail.  Also, all remaining service instances created by the framework either directly in this access session or on behalf of the client during this access session shall be terminated.  If at any point the framework's level of confidence in the identity of the client becomes too low, perhaps due to re-authentication failing,  the framework should terminate all outstanding service agreements for that client, and should take steps to terminate the client's access session WITHOUT invoking terminateAccess() on the client.  This follows a generally accepted security model where the framework has decided that it can no longer trust the client and will therefore sever ALL contact with it. 

Parameters

terminationText : in TpString

This is the termination text describes the reason for the termination of the access session.
signingAlgorithm : in TpSigningAlgorithm

This is the algorithm used to compute the digital signature.  It shall be identical to the one chosen by the framework in response to IpAccess.selectSigningAlgorithm().  If the signingAlgorithm is not the chosen one, is invalid, or unknown to the client, the P_INVALID_SIGNING_ALGORITHM exception will be thrown. The list of possible algorithms is as specified in the TpSigningAlgorithm table. The identifier used in this parameter must correspond to the digestAlgorithm and signatureAlgorithm fields in the SignerInfo field in the digitalSignature (see below).
digitalSignature : in TpOctetSet

This contains a CMS (Cryptographic Message Syntax) object (as defined in [RFC 2630]) with content type Signed-data. The signature is calculated and created as per section 5 of RFC 2630. The content is made of the termination text. The "external signature" construct shall not be used (i.e. the eContent field in the EncapsulatedContentInfo field shall be present and contain the termination text string). The signing-time attribute, as defined in section 11.3 of RFC 2630, shall also be used to provide replay prevention.  The framework uses this to confirm its identity to the client.  The client can check that the terminationText has been signed by the framework.  If a match is made, the access session is terminated, otherwise the P_INVALID_SIGNATURE exception will be thrown.
Raises

TpCommonExceptions, P_INVALID_SIGNING_ALGORITHM, P_INVALID_SIGNATURE
6.3.1.3 Interface Class IpInitial 

Inherits from: IpInterface.
The Initial Framework interface is used by the client to initiate the authentication with the Framework. 
This interface shall be implemented by a Framework.  The initiateAuthentication() and the initiateAuthenticationWithVersion() methods shall be implemented.
	<<Interface>>

IpInitial

	

	<<deprecated>> initiateAuthentication (clientDomain : in TpAuthDomain, authType : in TpAuthType) : TpAuthDomain

<<new>> initiateAuthenticationWithVersion (clientDomain : in TpAuthDomain, authType : in TpAuthType, frameworkVersion : in TpVersion) : TpAuthDomain




6.3.1.3.1 Method <<deprecated>> initiateAuthentication()

This method is deprecated in this version, this means that it will be supported until the next major release of this specification.

This method is invoked by the client to start the process of authentication with the framework, and request the use of a specific authentication method.

Returns <fwDomain> : This provides the client with a framework identifier, and a reference to call the authentication interface of the framework.






























structure TpAuthDomain {


























domainID: 

TpDomainID;
























authInterface:

IpInterfaceRef;























};





























The domainID parameter is an identifier for the framework (i.e. TpFwID). It is used to identify the framework to the client.



























The authInterface parameter is a reference to the authentication interface of the framework. The type of this interface is defined by the authType parameter.  The client uses this interface to authenticate with the framework. 

Parameters

clientDomain : in TpAuthDomain

This identifies the client domain to the framework, and provides a reference to the domain's authentication interface.




































structure TpAuthDomain {


























domainID: 

TpDomainID;
























authInterface:

IpInterfaceRef;






















};






























The domainID parameter is an identifier either for a client application (i.e. TpClientAppID) or for an enterprise operator (i.e. TpEntOpID), or for an instance of a registered service (i.e. TpServiceInstanceID) or for a service supplier (i.e. TpServiceSupplierID). It is used to identify the client domain to the framework, (see authenticate() on IpAPILevelAuthentication).  If the framework does not recognise the domainID, the framework returns an error code (P_INVALID_DOMAIN_ID).  























The authInterface parameter is a reference to call the authentication interface of the client.  The type of this interface is defined by the authType parameter. If the interface reference is not of the correct type, the framework returns an error code (P_INVALID_INTERFACE_TYPE).
authType : in TpAuthType

This identifies the type of authentication mechanism requested by the client. It provides operators and clients with the opportunity to use an alternative to the API level Authentication interface, e.g. an implementation specific authentication mechanism like  CORBA Security, using the IpAuthentication interface, or Operator specific Authentication interfaces.  OSA API level Authentication is the default authentication mechanism (P_OSA_AUTHENTICATION). If P_OSA_AUTHENTICATION is selected, then the clientDomain and fwDomain authInterface parameters are references to interfaces of type Ip(Client)APILevelAuthentication. If P_AUTHENTICATION is selected, the fwDomain authInterface parameter references to interfaces of type IpAuthentication which is used when an underlying distribution technology authentication mechanism is used.
Returns

TpAuthDomain

Raises

TpCommonExceptions, P_INVALID_DOMAIN_ID, P_INVALID_INTERFACE_TYPE, P_INVALID_AUTH_TYPE
6.3.1.3.2 Method <<new>> initiateAuthenticationWithVersion()

This method is invoked by the client to start the process of authentication with the framework, and request the use of a specific authentication method using the new method with support for backward compatibility in the framework. The returned fwDomain authInterface will be selected to match the proposed version from the Client in the Framework response. If the Framework can't work with the proposed framework version the framework returns an error code (P_INVALID_VERSION).

Returns <fwDomain> : This provides the client with a framework identifier, and a reference to call the authentication interface of the framework.






























structure TpAuthDomain {


























domainID: 

TpDomainID;
























authInterface:

IpInterfaceRef;























};





























The domainID parameter is an identifier for the framework (i.e. TpFwID). It is used to identify the framework to the client.



























The authInterface parameter is a reference to the authentication interface of the framework. The type of this interface is defined by the authType parameter.  The client uses this interface to authenticate with the framework. 

Parameters

clientDomain : in TpAuthDomain

This identifies the client domain to the framework, and provides a reference to the domain's authentication interface.




































structure TpAuthDomain {


























domainID: 

TpDomainID;
























authInterface:

IpInterfaceRef;






















};






























The domainID parameter is an identifier either for a client application (i.e. TpClientAppID) or for an enterprise operator (i.e. TpEntOpID), or for an instance of a registered service (i.e. TpServiceInstanceID) or for a service supplier (i.e. TpServiceSupplierID). It is used to identify the client domain to the framework, (see challenge() on IpAPILevelAuthentication).  If the framework does not recognise the domainID, the framework returns an error code (P_INVALID_DOMAIN_ID).  























The authInterface parameter is a reference to call the authentication interface of the client.  The type of this interface is defined by the authType parameter. If the interface reference is not of the correct type, the framework returns an error code (P_INVALID_INTERFACE_TYPE).
authType : in TpAuthType

This identifies the type of authentication mechanism requested by the client. It provides operators and clients with the opportunity to use an alternative to the API level Authentication interface, e.g. an implementation specific authentication mechanism like  CORBA Security, using the IpAuthentication interface, or Operator specific Authentication interfaces.  OSA API level Authentication is the default authentication mechanism (P_OSA_AUTHENTICATION). If P_OSA_AUTHENTICATION is selected, then the clientDomain and fwDomain authInterface parameters are references to interfaces of type Ip(Client)APILevelAuthentication. If P_AUTHENTICATION is selected, the fwDomain authInterface parameter references to interfaces of type IpAuthentication that is used when an underlying distribution technology authentication mechanism is used.
frameworkVersion : in TpVersion

This identifies the version of the Framework implemented in the client. The TpVersion is a String containing the version number. Valid version numbers are defined in the respective framework specification.
Returns

TpAuthDomain

Raises

TpCommonExceptions, P_INVALID_DOMAIN_ID, P_INVALID_INTERFACE_TYPE, P_INVALID_AUTH_TYPE, P_INVALID_VERSION
6.3.1.4 Interface Class IpAuthentication 

Inherits from: IpInterface.
The Authentication Framework interface is used by client to request access to other interfaces supported by the Framework. The authentication process should in this case be done with some underlying distribution technology authentication mechanism, e.g. CORBA Security. 
At least one of IpAuthentication or IpAPILevelAuthentication interfaces shall be implemented by a Framework as a minimum requirement.  The requestAccess() method shall be implemented in each.
	<<Interface>>

IpAuthentication

	

	requestAccess (accessType : in TpAccessType, clientAccessInterface : in IpInterfaceRef) : IpInterfaceRef




6.3.1.4.1 Method requestAccess()

Once the client has been authenticated by the framework, the client may invoke the requestAccess operation on the IpAuthentication or IpAPILevelAuthentication interface. This allows the client to request the type of access they require. If they request P_OSA_ACCESS, then a reference to the IpAccess interface is returned. (Operators can define their own access interfaces to satisfy client requirements for different types of access.)

If this method is called before the client has been successfully authenticated, then the request fails, and an error code (P_ACCESS_DENIED) is returned.

This method may be invoked by the client immediately on IpAuthentication, when API Level authentication is not being used, since there is no indication to the client at API level that it is authenticated with the Framework.

Returns <fwAccessInterface> : This provides the reference for the client to call the access interface of the framework. 

Parameters

accessType : in TpAccessType

This identifies the type of access interface requested by the client.  If the framework does not provide the type of access identified by accessType, then an error code (P_INVALID_ACCESS_TYPE) is returned.
clientAccessInterface : in IpInterfaceRef

This provides the reference for the framework to call the access interface of the client.  If the interface reference is not of the correct type, the framework returns an error code (P_INVALID_INTERFACE_TYPE).
Returns

IpInterfaceRef

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_ACCESS_TYPE, P_INVALID_INTERFACE_TYPE
6.3.1.5 Interface Class IpAPILevelAuthentication 

Inherits from: IpAuthentication.
The API Level Authentication Framework interface is used by the client to authenticate the Framework.  It is also used to initiate the authentication process. 
If the IpAPILevelAuthentication interface is implemented by a Framework, then selectEncryptionMethod(), selectAuthenticationMechanism(), authenticate(), challenge(), abortAuthentication() and authenticationSucceeded () shall be implemented.  IpAPILevelAuthentication inherits the requirements of IpAuthentication, therefore requestAccess() shall be implemented.
	<<Interface>>

IpAPILevelAuthentication

	

	<<deprecated>> selectEncryptionMethod (encryptionCaps : in TpEncryptionCapabilityList) : TpEncryptionCapability

<<deprecated>> authenticate (challenge : in TpOctetSet) : TpOctetSet

abortAuthentication () : void

authenticationSucceeded () : void

<<new>> selectAuthenticationMechanism (authMechanismList : in TpAuthMechanismList) : TpAuthMechanism

<<new>> challenge (challenge : in TpOctetSet) : TpOctetSet




6.3.1.5.1 Method <<deprecated>> selectEncryptionMethod()

This method is deprecated and replaced by selectAuthenticationMechanism(). It shall only be used when the IpAPILevelAuthentication interface is obtained by using the deprecated method initiateAuthentication() instead of initiateAuthenticationWithVersion() on the IpInitial interface. This method will be removed in a later release.

The client uses this method to initiate the authentication process. The framework returns its preferred mechanism.  This should be within capability of the client.  If a mechanism that is acceptable to the framework within the capability of the client cannot be found, the framework  throws the P_NO_ACCEPTABLE_ENCRYPTION_CAPABILITY exception.   Once the framework has returned its preferred mechanism, it will wait for a predefined unit of time before invoking the client's authenticate() method (the wait is to ensure that the client can initialise any resources necessary to use the prescribed encryption method).

Returns <prescribedMethod> : This is returned by the framework to indicate the mechanism preferred by the framework for the encryption process. If the value of the prescribedMethod returned by the framework is not understood by the client, it is considered a catastrophic error and the client must abort. 

Parameters

encryptionCaps : in TpEncryptionCapabilityList

This is the means by which the encryption mechanisms supported by the client are conveyed to the framework.
Returns

TpEncryptionCapability

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_NO_ACCEPTABLE_ENCRYPTION_CAPABILITY
6.3.1.5.2 Method <<deprecated>> authenticate()

This method is deprecated and replaced by challenge(). It shall only be used when the IpAPILevelAuthentication interface is obtained by using the deprecated method initiateAuthentication() instead of initiateAuthenticationWithVersion() on the IpInitial interface.  This method will be removed in a later release.

This method is used by the client to authenticate the framework.  The challenge will be encrypted using the mechanism prescribed by selectEncryptionMethod. The framework must respond with the correct responses to the challenges presented by the client.  The domainID received in the initiateAuthentication() can be used by the framework to reference the correct public key for the client (the key management system is currently outside of the scope of the OSA APIs). The number of exchanges is dependent on the policies of each side.  The authentication of the framework is deemed successful when the authenticationSucceeded method is invoked by the client.  

The invocation of this method may be interleaved with authenticate() calls by the framework on the client's APILevelAuthentication interface.

Returns <response> : This is the response of the framework to the challenge of the client in the current sequence. The response will be based on the challenge data, decrypted with the mechanism prescribed by selectEncryptionMethod().  

Parameters

challenge : in TpOctetSet

The challenge presented by the client to be responded to by the framework. The challenge mechanism used will be in accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol [RFC 1994, August1996]. The challenge will be encrypted with the mechanism prescribed by selectEncryptionMethod().
Returns

TpOctetSet

Raises

TpCommonExceptions, P_ACCESS_DENIED
6.3.1.5.3 Method abortAuthentication()

The client uses this method to abort the authentication process where the framework is authenticating the client. This method is invoked if the client no longer wishes to continue the authentication process, (unless the framework responded incorrectly to a challenge in which case no further communication with the framework should occur.) If this method has been invoked before the client has been authenticated by the Framework, calls to the requestAccess operation on IpAPILevelAuthentication will return an error code (P_ACCESS_DENIED), until the client has been properly authenticated.  If this method is invoked after the client has been authenticated by the Framework, it shall not result in the immediate removal of the client's authentication.  (The Framework may wish to authenticate the client again, however).  

Parameters

No Parameters were identified for this method

Raises

TpCommonExceptions,P_ACCESS_DENIED
6.3.1.5.4 Method authenticationSucceeded()

The client uses this method to inform the framework of the success of the authentication attempt.  Calls to this method have no impact on the client's rights to call requestAccess(), which depend exclusively on the framework's successful authentication of the client. 

Parameters

No Parameters were identified for this method

Raises

TpCommonExceptions, P_ACCESS_DENIED
6.3.1.5.5 Method <<new>> selectAuthenticationMechanism()

The client uses this method to inform the Framework of the different authentication mechanisms it supports as part of API level Authentication.  The Framework will select one of the suggested authentication mechanisms and that mechanism shall be used for authentication by both Framework and Client.   The authentication mechanism chosen as a result of the response to this method remains valid for an instance of IpAPILevelAuthentication and until this method is re-invoked by the client. If a mechanism that is acceptable to the framework within the capability of the client cannot be found, the framework  throws the P_NO_ACCEPTABLE_AUTHENTICATION_MECHANISM exception.   

This method shall only be used when the IpAPILevelAuthentication interface is obtained by using initiateAuthenticationWithVersion() on the IpInitial interface.

Returns: selectedMechanism.  This is the authentication mechanism chosen by the Framework.  The chosen mechanism shall be taken from the list of mechanisms proposed by the Client. 

Parameters

authMechanismList : in TpAuthMechanismList

The list of authentication mechanisms supported by the client.
Returns

TpAuthMechanism

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_NO_ACCEPTABLE_AUTHENTICATION_MECHANISM

6.3.1.5.6 Method <<new>> challenge()

This method is used by the client to authenticate the framework. The framework must respond with the correct responses to the challenges presented by the client.  The number of exchanges is dependent on the policies of each side.  The authentication of the framework is deemed successful when the authenticationSucceeded method is invoked by the client.  

The invocation of this method may be interleaved with challenge() calls by the framework on the client's APILevelAuthentication interface.

This method shall only be used when the IpAPILevelAuthentication interface is obtained by using initiateAuthenticationWithVersion() on the IpInitial interface.

Returns <response> : This is the response of the framework to the challenge of the client in the current sequence. The formatting of this parameter shall be according to section 4.1 of RFC 1994. A complete CHAP Response packet shall be used to carry the response string. The Response packet shall make the contents of this returned parameter. The Name field of the CHAP Response packet shall be present but not contain any useful value. 

Parameters

challenge : in TpOctetSet

The challenge presented by the client to be responded to by the framework. The challenge format used will be in accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol [RFC 1994, August1996].
The formatting of the challenge value shall be according to section 4.1 of RFC 1994. A complete CHAP Request packet shall be used to carry the challenge value. The Name field of the CHAP Request packet shall be present but not contain any useful value.
Returns

TpOctetSet

Raises

TpCommonExceptions, P_ACCESS_DENIED
6.3.1.6 Interface Class IpAccess 

Inherits from: IpInterface.
This interface shall be implemented by a Framework.  As a minimum requirement the obtainInterface() and obtainInterfaceWithCallback(), selectSigningAlgorithm() and terminateAccess() methods shall be implemented.  

	<<Interface>>

IpAccess

	

	obtainInterface (interfaceName : in TpInterfaceName) : IpInterfaceRef

obtainInterfaceWithCallback (interfaceName : in TpInterfaceName, clientInterface : in IpInterfaceRef) : IpInterfaceRef

<<deprecated>> endAccess (endAccessProperties : in TpEndAccessProperties) : void

listInterfaces () : TpInterfaceNameList

<<deprecated>> releaseInterface (interfaceName : in TpInterfaceName) : void

<<new>> selectSigningAlgorithm (signingAlgorithmCaps : in TpSigningAlgorithmCapabilityList) : TpSigningAlgorithm

<<new>> terminateAccess (terminationText : in TpString, digitalSignature : in TpOctetSet) : void

<<new>> relinquishInterface (interfaceName : in TpInterfaceName, terminationText : in TpString, digitalSignature : in TpOctetSet) : void




6.3.1.6.1 Method obtainInterface()

This method is used to obtain other framework interfaces. The client uses this method to obtain interface references to other framework interfaces. (The obtainInterfaceWithCallback method should be used if the client is required to supply a callback interface to the framework.)

Returns <fwInterface> : This is the reference to the interface requested. 

Parameters

interfaceName : in TpInterfaceName

The name of the framework interface to which a reference to the interface is requested. If the interfaceName is invalid, the framework returns an error code (P_INVALID_INTERFACE_NAME).
Returns

IpInterfaceRef

Raises

TpCommonExceptions,P_ACCESS_DENIED,P_INVALID_INTERFACE_NAME
6.3.1.6.2 Method obtainInterfaceWithCallback()

This method is used to obtain other framework interfaces. The client uses this method to obtain interface references to other framework interfaces, when it is required to supply a callback interface to the framework. (The obtainInterface method should be used when no callback interface needs to be supplied.)

Returns <fwInterface> : This is the reference to the interface requested. 

Parameters

interfaceName : in TpInterfaceName

The name of the framework interface to which a reference to the interface is requested. If the interfaceName is invalid, the framework returns an error code (P_INVALID_INTERFACE_NAME).
clientInterface : in IpInterfaceRef

This is the reference to the client interface, which is used for callbacks. If a client interface is not needed, then this method should not be used. (The obtainInterface method should be used when no callback interface needs to be supplied.)  If the interface reference is not of the correct type, the framework returns an error code (P_INVALID_INTERFACE_TYPE).
Returns

IpInterfaceRef

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_INTERFACE_NAME, P_INVALID_INTERFACE_TYPE
6.3.1.6.3 Method <<deprecated>> endAccess()

This method is deprecated and will be removed in a later release.  It is replaced with terminateAccess.  The endAccess operation is used by the client to request that its access session with the framework is ended.  After it is invoked, the client will no longer be authenticated with the framework. The client will not be able to use the references to any of the framework interfaces gained during the access session. Any calls to these interfaces will fail. 

Parameters

endAccessProperties : in TpEndAccessProperties

 This is a list of properties that can be used to tell the framework the actions to perform when ending the access session (e.g. existing service sessions may be stopped, or left running).  If a property is not recognised by the framework, an error code (P_INVALID_PROPERTY) is returned. 
Raises

TpCommonExceptions,P_ACCESS_DENIED, P_INVALID_PROPERTY
6.3.1.6.4 Method listInterfaces()

The client uses this method to obtain the names of all interfaces supported by the framework.  It can then obtain the interfaces it wishes to use using either obtainInterface() or obtainInterfaceWithCallback().

Returns <frameworkInterfaces> : The frameworkInterfaces parameter contains a list of interfaces that the framework makes available. 

Parameters

No Parameters were identified for this method

Returns

TpInterfaceNameList

Raises

TpCommonExceptions, P_ACCESS_DENIED
6.3.1.6.5 Method <<deprecated>> releaseInterface()

This method is deprecated and will be removed in a later release.  It is replaced with relinquishInterface.  The client uses this method to release a framework interface that was obtained during this access session.  

Parameters

interfaceName : in TpInterfaceName

This is the name of the framework interface which is being released. If the interfaceName is invalid, the framework throws the P_INVALID_INTERFACE_NAME exception.  If the interface has not been given to the client during this access session, then the P_TASK_REFUSED exception will be thrown.
Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_INTERFACE_NAME
6.3.1.6.6 Method <<new>> selectSigningAlgorithm()

The client uses this method to inform the Framework of the different signing  algorithms it supports for use in all cases where digital signatures are required.  The Framework will select one of the suggested algorithms.   This method shall be the first method invoked by the client on IpAccess.  The algorithm chosen as a result of the response to this method remains valid for an instance of IpAccess and until this method is re-invoked by the client. If an algorithm that is acceptable to the framework within the capability of the client cannot be found, the framework  throws the P_NO_ACCEPTABLE_SIGNING_ALGORITHM exception.   

Returns: selectedAlgorithm.  This is the signing algorithm chosen by the Framework.  The chosen algorithm shall be taken from the list proposed by the Client. 

Parameters

signingAlgorithmCaps : in TpSigningAlgorithmCapabilityList

The list of signing algorithms supported by the client.
Returns

TpSigningAlgorithm

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_NO_ACCEPTABLE_SIGNING_ALGORITHM

6.3.1.6.7 Method <<new>> terminateAccess()

The terminateAccess method is used by the client to request that its access session with the framework is ended.  After it is invoked, the client will no longer be authenticated with the framework. The client will not be able to use the references to any of the framework interfaces gained during the access session. Any calls to these interfaces will fail. Also, all remaining service instances created by the framework either directly in this access session or on behalf of the client during this access session shall be terminated. 

Parameters

terminationText : in TpString

This is the termination text describes the reason for the termination of the access session.
digitalSignature : in TpOctetSet

This contains a CMS (Cryptographic Message Syntax) object (as defined in [RFC 2630]) with content type Signed-data. The signature is calculated and created as per section 5 of RFC 2630. The content is made of the termination text. The "external signature" construct shall not be used (i.e. the eContent field in the EncapsulatedContentInfo field shall be present and contain the termination text string). The signing-time attribute, as defined in section 11.3 of RFC 2630, shall also be used to provide replay prevention.  The client uses this to confirm its identity to the framework.  The framework can check that the terminationText has been signed by the client.  If a match is made, the access session is terminated, otherwise the P_INVALID_SIGNATURE exception will be thrown.
Raises

TpCommonExceptions, P_INVALID_SIGNATURE

6.3.1.6.8 Method <<new>> relinquishInterface()

The client uses this method to release an instance of a framework interface that was obtained during this access session.   

Parameters

interfaceName : in TpInterfaceName

This is the name of the framework interface which is being released. If the interfaceName is invalid, the framework throws the P_INVALID_INTERFACE_NAME exception.  If the interface has not been given to the client during this access session, then the P_TASK_REFUSED exception will be thrown.
terminationText : in TpString

This is the termination text describes the reason for the release of the interface.  This text is required simply because the digitalSignature parameter requires a terminationText to sign.
digitalSignature : in TpOctetSet

This contains a CMS (Cryptographic Message Syntax) object (as defined in [RFC 2630]) with content type Signed-data. The signature is calculated and created as per section 5 of RFC 2630. The content is made of the termination text. The "external signature" construct shall not be used (i.e. the eContent field in the EncapsulatedContentInfo field shall be present and contain the termination text string). The signing-time attribute, as defined in section 11.3 of RFC 2630, shall also be used to provide replay prevention.  The client uses this to confirm its identity to the framework.  The framework can check that the terminationText has been signed by the client.  If a match is made, the interface is released, otherwise the P_INVALID_SIGNATURE exception will be thrown.
Raises

TpCommonExceptions, P_INVALID_SIGNATURE, P_INVALID_INTERFACE_NAME

�PAGE \# "'Page: '#'�'"  �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.


�PAGE \# "'Page: '#'�'"  �� Enter the CR number here. This number is allocated by the 3GPP support team.  It consists of at least three digits, padded with leading zeros if necessary.


�PAGE \# "'Page: '#'�'"  �� Enter the revision number of the CR here. If it is the first version, use a "-".


�PAGE \# "'Page: '#'�'"  �� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��� � HYPERLINK "http://www.3gpp.org/specs/specs.htm" ��http://www.3gpp.org/specs/specs.htm�.


�PAGE \# "'Page: '#'�'"  �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.


�PAGE \# "'Page: '#'�'"  �� Mark one or more of the boxes with an X.


�PAGE \# "'Page: '#'�'"  �� SIM / USIM / ISIM applications.


�PAGE \# "'Page: '#'�'"  �� Enter a concise description of the subject matter of the CR. It should be no longer than one line.  Do not use redundant information such as "Change Request number xxx to 3GPP TS xx.xxx".


�PAGE \# "'Page: '#'�'"  �� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.


�PAGE \# "'Page: '#'�'"  �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/� .�The list is also included in a MS Excel file included in the zip file containing the CR cover sheet template.


�PAGE \# "'Page: '#'�'"  �� Enter the date on which the CR was last revised.  Format to be interpretable by English version of MS Windows ® applications, e.g. 19/02/2002.


�PAGE \# "'Page: '#'�'"  �� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report � HYPERLINK "http://www.3gpp.org/ftp/Specs/archive/21_series/21.900/" ��21.900� "TSG working methods".


�PAGE \# "'Page: '#'�'"  �� Enter a single release code from the list below.


�PAGE \# "'Page: '#'�'"  �� Enter text which explains why the change is necessary.


�PAGE \# "'Page: '#'�'"  �� Enter text which describes the most important components of the change. i.e. How the change is made.


�PAGE \# "'Page: '#'�'"  �� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. correction).


�PAGE \# "'Page: '#'�'"  �� Enter the number of each clause which contains changes.


�PAGE \# "'Page: '#'�'"  �� Tick "yes" box if any other specifications are affected by this change.  Else tick "no".  You MUST fill in one or the other.


�PAGE \# "'Page: '#'�'"  �� List here the specifications which are affected or the CRs which are linked.


�PAGE \# "'Page: '#'�'"  �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.


�PAGE \# "'Page: '#'�'"  �� This is an example of pop-up text.





CR page 17

